
A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving
Rebecca S. Crowley, MD, MS1,2,3 and Olga Medvedeva MS, MS1

 1 Center for Pathology Informatics, University of Pittsburgh School of Medicine, Pittsburgh PA
2 Center for Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh PA

 3 Intelligent Systems Program, University of Pittsburgh, Pittsburgh PA

ABSTRACT

We report on a general architecture for creating
knowledge-based medical training systems to teach
diagnostic classification problem solving. The approach is
informed by our previous work describing the development
of expertise in classification problem solving in Pathology.
The architecture envelops the traditional Intelligent
Tutoring System design within the Unified Problem-solving
Method description Language (UPML) architecture,
supporting component modularity and reuse. Based on the
domain ontology, domain task ontology and case data, the
abstract problem-solving methods of the expert model
create a dynamic solution graph. Student interaction with
the solution graph is filtered through an instructional layer,
which is created by a second set of abstract problem-solving
methods and pedagogic ontologies, in response to the
current state of the student model. We outline the
advantages and limitations of this general approach, and
describe it’s implementation in SlideTutor – a developing
Intelligent Tutoring System in Dermatopathology.

INTRODUCTION

An important potential application of knowledge-based
systems in Medical Informatics is the training of future
medical professionals. Despite significant work in medical
knowledge engineering and decision-support, advances in
these areas are rarely applied in computer-based medical
education. One potential reason is the absence of general
architectures or frameworks for incorporating medical
knowledge bases in larger instructional systems. Just as
domain knowledge is necessary, but not sufficient, for
competent teaching, domain knowledge systems are
necessary, but not sufficient for competent, knowledge-
based teaching systems. We outline a general architecture
for development of knowledge-based medical training
systems, and describe the application of this architecture in
SlideTutor 1, a developing training system in
Dermatopathology. The empirical foundation for SlideTutor
is our ongoing cognitive analysis of visual diagnostic
classification 2. The approach incorporates aspects of
intelligent tutoring system (ITS) design 3, as well as
methods of knowledge modeling 4, establishing a general
architecture for instruction in classification problem solving.

BACKGROUND

ITS are adaptive, instructional systems that seek to emulate
the well known benefits of one-on-one tutoring when
compared to other instructional methods. Many ITS have
been shown to improve student performance beyond
classroom instruction, and close to what can be achieved

with a human tutor 5. Model tracing ITS (MT-ITS) are a
subtype of ITS that guide the student through the problem
space, correcting errors in the intermediate steps and
offering hints specific to the current problem state 6.
Dialogue systems are another kind of ITS that provide an
ongoing conversation about problem-solving, in which the
dialogue may be student-initiated, system-initiated, or
mixed-initiative. Any ITS typically includes four basic
components: expert module, student model, pedagogic
knowledge and interface 3. The expert module provides a
model of expert performance against which the student is
measured. Across multiple problems or cases, ITS
dynamically model the student. Assessment of the student
state may influence the system’s pedagogic decisions about
tutorial strategy, case selection and curriculum sequencing.

Only a handful of medical ITS have been developed 7-10. Of
these, the GUIDON project 10 is most directly relevant.
GUIDON used 200 tutorial rules as well as MYCIN’s 400
domain rules to teach medical students to learn to identify
the most likely causative organism in cases of infectious
meningitis and bacteremia. Before a case was presented,
consultation with MYCIN was used to generate an
AND/OR tree representing Goals (OR nodes) and Rules
(AND nodes). GUIDON then used the AND/OR tree to
structure the discussion with the student. Interaction used a
mixed-initiative method of dialogue. One of the central
advances of GUIDON was the separation of domain
knowledge from pedagogic knowledge. However, by
current standards, the scope of domain knowledge was quite
small. Consequently, GUIDON’s feedback was only
relevant to a very small part of the domain.

GENERAL ARCHITECTURE

The central assumption in our architecture is that human
cognition is modeled by production rule systems. This
assumption is based on a framework of human cognition
that has accumulated abundant empirical validation 11. The
commitment to a rule-based expert model is needed to
achieve a teaching system that is congruent to human
cognition and capable of providing rapid student feedback.
However, the rule system architecture can be limiting. Like
GUIDON, almost all existing ITS use production rules that
are specific to the domain knowledge they teach. In abstract,
procedural, and tightly circumscribed domains such as
Algebra, Physics, or Programming this poses no specific
disadvantages. In contrast, development of medical tutoring
systems requires highly complex, large declarative
knowledge structures, which may evolve over time. To
address this requirement, we utilize a common knowledge
engineering method - abstract problem solving methods and
ontologies. The architecture we propose (Figure 1) is

consistent with the constraints of the UPML Component
Model 12, resulting in an ITS architecture that is modular
and re-usable, but also cognitively plausible.

The expert model is composed of domain model ontology,
domain task ontology, and abstract problem solving
methods. The domain model ontology represents the domain
knowledge used to solve problems. The domain task
ontology represents the goals of the problem-solving
process. In combination with the case data, the abstract
problem-solving methods create a dynamic solution graph
which student actions are tested against. The pedagogic
model is composed of a separate set of component
ontologies and problem-solving methods including a
pedagogic ontology, pedagogic task ontology and abstract
problem solving methods. The pedagogic model ontology
represents the pedagogic knowledge used to teach problem-
solving. The pedagogic task ontology represents the goals of
the instructional process. In combination with data
reflecting the current state of the student model, the
pedagogic model creates a highly flexible and context -
specific instructional layer between the student interface and
the dynamic solution graph.

Advantages of this architecture include: (1) Much larger
expert models are possible. Students have a tendency to
wander far afield in any problem space. Large models
enable targeted feedback that guides students back to the
solution path. (2) Many diagnostic medical problems have
deep, structural task similarities – searching, identification,
hypothesis formation and testing, etc. A general architecture
can be reused with many domain ontologies, pedagogic
models, or student interfaces. (3) Knowledge in the
ontologies can be easily modified or expanded without
altering the underlying code.

IMPLEMENTATION IN SLIDETUTOR

SlideTutor 1 is a developing medical ITS, that uses this
general architecture. The expert model of SlideTutor is
composed of a domain task ontology instantiated for visual
classification, a domain model instantiated in Inflammatory

Skin Diseases, and the abstract problem solving methods for
generating the dynamic solution graph. The domain task
ontology, and abstract problem solving methods for the
system have been completed. The domain model is
instantiated for one of eleven algorithms in Inflammatory
Skin Diseases 13. On the pedagogic side, we have created
and partially instantiated the pedagogic model, and built an
initial set of the abstract problem-solving methods for
creating the instructional layer. But flexibility in the
instructional layer requires a functional student modeling
system, which is not yet implemented. Therefore, we are
currently using a default set of pedagogic goals.

SlideTutor is implemented as a client-server application in
the Java and Jess programming languages. Ontologies are
developed with Protégé-2000 (protege.stanford.edu) and
problem-solving methods are written and executed in Jess –
a Java production rule system (herzberg.ca.sandia.gov/jess/).
Our Virtual Microscope system extends a commercial
software package for web-based image panning and
zooming (www.xippix.com). A prototype student interface
for use with the system can be downloaded from the project
homepage at (slidetutor.upmc.edu) using Java Web Start.
(java.sun.com/ products/javawebstart/). The student interface
combines a virtual slide viewer and diagrammatic reasoning
interface (Figure 2). Users can search an example whole
slide image using a virtual microscope, point to features of
importance in the image, and construct a graphical argument
for one or more diagnoses. Each user step in the interface is
evaluated against SlideTutor’s expert model, and
appropriate feedback is generated. For programming and
debugging the dynamic solution graph, we extended JGraph
(www.jgraph.org) to provide a visualization of the evolving
problem state (Figure 3).

KNOWLEDGE REPRESENTATION

SlideTutor is currently instantiated in the sub-domain of
Inflammatory Diseases of Skin, an area of the doma in that is
highly algorithmic. Instances are specific to one of the
eleven diagnostic algorithms 13– Subepidermal Vesicular
Dermatitis. Further work is planned to represent disease

Instructional Layer

Pedagogic Task
Structure

Pedagogic
Task

Dermatology
Knowledge Base

Domain
Model

Visual
Classification

Task Structure

Domain
Task

Pedagogic
Knowledge Base

Pedagogic
Model

Case Database

Interface

Expert Model

Student Model

Student
Model
State

Student
Model
State
Student Model

Data

Slide
Representation

Case Data

Slide
Representation

Case Data

Slide
Representation

Case Data

Student

Dynamic Solution Graph

Pedagogic Model

Domain
Behavior
Refiner

Problem
Solving
Methods

Pedagogic
Behavior
Refiner

Problem
Solving

Methods

Figure 1. General Architecture for Intelligent Tutoring of Classification Problem Solving

Figure 2. Current node-and-arc reasoning interface.

entities in the remaining ten algorithms. Details of
SlideTutor’s expert model knowledge representation have
been previously described 1. Briefly, to generate the
dynamic solution graph, abstract problem solving methods
are applied to three sets of working memory elements
(frames): domain model (dermatopathology knowledge-
base), case data (slide representation for a given case), and
domain task model (visual classification task structure
indicating the sequence of possible task actions).

Domain Model. The class concepts and relationships of the
domain model ontology are general, and apply widely
throughout Pathology and other areas of medicine in which
classification is feature-based. Our representation slightly
extends the ontology for classification problem solving
described by Motta et al 14. Diseases are hierarchically
represented. Any disease may belong to more than one
class (multiple inheritance). Diseases have any number of
FEATURE_SPECIFICATION instances representing the
distinct histologic patterns that are to be learned, which are
built up from features, attributes, and values. Instances of
FEATURE represent distinct perceptual primitives of visual
entities (such as blister) that form the “atoms” of visual
feature recognition. Instances of the class
ATTRIBUTE_VALUE_LIST are composed of sets of
ATTURBUTES and VALUES, and represent the additional
cognitive steps for refining these features (such as the
distinction of a blister’s location relative to the epidermis as
sub-epidermal or intra-epidermal).

Case Data. Each instance of SLIDE represents the location
and content of each lesion and feature encoded in a single
slide. ATTRIBUTE, VALUE and FEATURE are the same
classes used in the Knowledge-Base. Instances of
FEATURE and unique sets of attributes and values are
represented as instances of class OBSERVABLE. Instances
of the class OBSERVABLE model values specific to the
given case as opposed to the attribute ranges of
FEATURE_SPECIFICATIONS. SLIDE representations are
created using a Slide Authoring Tool.

Domain Task Model. The domain task model represents
goals to be achieved including (1) finding a focal lesion, (2)

identifying visual features, (3) mo difying features with
attributes and values, (4) asserting a hypothesis, (5) linking
evidence to hypothesis, (6) setting a goal to find a feature
that distinguishes between multiple hypotheses, and (7)
making a diagnosis. Instantiation of the domain task model
occurs at run-time, dependent on the case and student, and
will ultimately be subject to decisions of the pedagogic
model. Goals contain priorities that will ultimately be set by
the pedagogic model.

DYNAMIC SOLUTION GRAPH

The dynamic solution graph (DSG) is a directed acyclic
graph, designed to generate valid paths through the problem
space, based on the case data, domain model, and domain
task model. A graph representation supports many useful
features for a teaching system. It enables both forward
reasoning and backwards reasoning, and can express
negated nodes as well as negated relationships. The DSG is
capable of generating the entire space, but any individual
state of the DSG indicates only the current problem state
and all valid next -steps. Any valid next -step events
propagate iteratively through the abstract nodes until all the
current pedagogic goal requirements are met. The actions
that occur in response to a triggered event alter the solution
graph, specific to the type of goal node. This function is
encapsulated in the unique behavior structures for each
different type of node. The behavior of DSG is dependent
on the order of input events applied to the current problem
state, therefore forward and backwards reasoning generate
different graphs.

Our implementation uses cluster nodes to represent the
superset of nodes of the same type. Arcs between clusters
and other nodes express an integrated relation between the
state of the cluster’s elements and nodes outside the cluster.
For example, a single piece of evidence can be associated
with different FEATURE_SPECIFICATIONS of the same
DISEASE. Thus, the evidence cluster contains all potential
FEATURE_SPECIFICATIONS, as the problem advances
towards a solution state. At the conclusion of successful
problem-solving, only one FEATURE_SPECIFICATION
remains for each valid disease hypothesis. Furthermore,
evidence clusters allow two potential pedagogic strategies
for feedback about evidence-hypothesis relationships. The
system can permit hypothesis formation based on a single
piece of evidence, or require that a hypothesis be consistent
with all accumulated evidence.

Thus, the decision to use a dynamic graph was based on
multiple factors. The DSG (1) limits the size of working
memory for a solution space that can be extremely large, (2)
allows disambiguation as the problem state changes and (3)
provides flexibility in pedagogic feedback as well as the
potential to completely change pedagogic strategy based on
individual student actions.

For programming and debugging purposes, we extended
JGraph to “walk” the dynamic graph (Figure 3). The DSG
debugger can be initialized to any problem state. Clicking

Figure 3. Visualization of DSG with DSG debugger.

on nodes propagates events and updates the graph to the
next problem state, simulating student actions.

INSTRUCTIONAL LAYER

The purpose of the instructional layer is to provide feedback
to students as they solve problems. In SlideTutor, the
instructional layer is implemented as a model-tracer 6 – a
system that provides step-by-step feedback and hints based
on it’s expert model. However, the modularity of our design
permits the same expert model to be used with any
instructional layer (for example a dialogue system or a
critiquing system) as well as any interface.

Our model-tracer matches student actions against the DSG
and generates an appropriate response. When student
actions reproduce reasonable paths through the problem-
space, the state of the DSG advances with each correct
action , but the instructional layer takes no action. When the
student takes an incorrect action, the instructional layer
analyzes the student action and determines which “bug”
message to return to the student. When the student is unsure
what to do and asks for a hint, the instructional layer queries
the DSG to determine the valid next -step with the highest
priority.

Bug and Hint text messages are instances of template hints
from the Pedagogic Knowledge Base, into which values
specific to the student action and current problem state are
inserted. In addition to presenting context -specific text, bug
and hint messages may also direct the student’s visual
attention - for example by moving the viewer to the area
with the lesion, or annotating a particular feature on the
whole slide. Hint messages are hierarchical. Early hints
offer general advice, but subsequent requests return specific
instructions about appropriate next actions.

The current implementation of the instructional layer
includes only the functionality required to provide the three
basic model-tracing facilities described above. In future
work, we will significantly expand the role of the
instructional layer, develop (or modify existing) general

classes for teaching, create instances appropriate to the
teaching of diagnostic classification problem solving, and
write additional abstract problem solving methods that
configure the instructional layer specific to the current state
of the student model. We intend to create an instructional
layer that can responsively adapt to changing student needs,
by changing the pedagogic approach (e.g. to a case based
approach), altering the interface (e.g. to an algorithmic
interface), changing hint modalities (e.g. when students
respond better to visual or to textual hints) and permitting
more advanced student behaviors (e.g. step-skipping,
incomplete articulation).

EXAMPLE INTERACTION

To clarify the functions and relationships of these
components, we trace the interaction between a hypothetical
student and SlideTutor for three steps in a problem – a
correct action , an incorrect action and a hint request. A case
of Dermatitis Herpetiformis is presented to the student as an
unknown. At the beginning of the session, instances from
the Dermatopathology Knowledge Base and the Slide
Representation of that case are asserted as Jess facts. The
problem solving methods of the expert model, create a new
set of Jess facts based on the Jess templates (classes)
defined in the Visual Classification Task Model, and
construct a graph of the present problem state and valid-
next -steps. As the problem starts, the only valid-next -step is
to find the area of the slide with the lesion on it. Our student
successfully traverses this area with the virtual microscope.
The instructional layer takes no action. The system registers
this correct action and problem-solving methods generate
the next state of the solution graph. The new valid-next -
steps for this novice student include only the identification
of evidence in the slide, because the pedagogic model
requires complete articulation of evidence.

The student finds an area of discontinuity between the
epithelium and the dermis, points to it in the image, and
selects “epidermal necrosis” as the feature. This step is an
incorrect action. The DSG state does not change. The
instructional layer determines that the location the student
selected in the image is associated with feature “blister” –
not “epithelial necrosis” and responds with the message:
“There is an important feature in that area but it’s not
<epithelial necrosis>” by inserting the current user input (in
brackets) into the specific bug message for this situation.
The template text of this bug message originates from the
pedagogic knowledge base. The system also indicates the
error by creating a finding icon in the diagrammatic
reasoning space, which is marked in red. The student cannot
do anything with this icon except to delete it.

The student does not know what to do and asks for a hint.
The DSG state does not change. The instructional layer
responds by mo ving the viewer to the correct magnification
and field and indicating that this is the area where the
feature is found. Additional hint requests generate: (1) a text
message there is an epidermal change, (2) a text message
indicating that this is the feature in question accompanied by
annotation of the image, and eventually (3) a text message

telling the student that this is a Blister. Once the Blister icon
has been created, the student must also specify that the
Blister has a location that is sub-epidermal (attribute-value)
because the distinction of sub-epidermal from intra-
epidermal is critical in this classification algorithm.

The current default state of the pedagogic model requires
that any hypothesis must be preceded by at least one piece
of evidence. Therefore, the next DSG state will be the first
time that possible hypotheses based on that evidence appear
as valid-next -steps in the graph. The evidence cluster
supports hypotheses that match all of the evidence. So hints
at this point can be directed towards the best hypotheses
(supported by the cluster), even though the system may
accept any hypothesis that is consistent with one piece of
found evidence. Once a hypothesis is created (Figure 2), the
solution graph contains nodes for all valid support and
refute actions that link found-evidence to hypotheses
(Figure 3). Additionally, it contains every
feature/attribute/value combination valid for any
FEATURE_SPECIFICATION of that hypothesis. This
models the “backwards reasoning” component. In this way,
the system can eventually provide feedback that reinforces
efforts to find these features, especially those that
distinguish among the current hypotheses.

LIMITATIONS

One of the primary limitations of the architecture we
propose is that is not well suited for domains where there
are no clear prototypical instances or schemas. All possible
combinations of the evidence cannot be modeled in a system
such as this. One could argue that in a teaching system -
they should not be. Part of good teaching is choosing cases
that are prototypical or that represent common exceptions.
The goal is to help students learn basic classification skills
in practice, giving them a framework into which subsequent
exceptions can be incorporated.

CONCLUSIONS

We have developed a general set of resources including
domain and task ontologies, and abstract problem-solving
methods needed for the expert model of an Intelligent
Tutoring System in Dermatopathology. The architecture we
describe is general, modular and flexible, and could be
applied to virtually any feature-based classification task in
Medicine. Modifications of this architecture could be used
for instruction in other medical tasks such as patient
management. The potential reuse of existing resources (e.g.
clinical guidelines encoded in GLIF) offers significant
advantages to the development of knowledge-based
educational systems. By elaborating, expanding and further
generalizing this architecture, it may be possible to develop
tutoring frameworks (shells) specific to medical tasks. A
medical tutoring framework could implement the
architecture described, using existing resources like Protégé-

2000, to support rapid development of intelligent medical
training systems. Use of emergent ideas from the UPML 12
project may one day permit tutoring agents that operate over
the distributed knowledge base of the Semantic Web.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Library of
Medicine (R01 LM007891-01) and the Competitive Medical
Research Fund, Office of Research, Health Sciences, at the
University of Pittsburgh.

REFERENCES

1. Crowley RS, Medvedeva O, and Jukic D. SlideTutor – A
model-tracing Intelligent Tutoring System for teaching
microscopic diagnosis. Proceedings of the 11th International
Conference on Artificial Intelligence in Education. Sydney,
Australia, 2003.

2. Crowley RS, Naus GJ, Stewart J, and Friedman CP.
Development of Visual Diagnostic Expertise in Pathology –
An Information Processing Study. J Am Med Inform Assoc
10(1):39-51, 2003.

3. Wenger E. Artificial Intelligence and Tutoring Systems –
Computational and Cognitive Approaches to the
Communication of Knowledge. Los Altos, CA: Morgan
Kaufmann Publishers, 1987.

4. Gennari JH, Tu SW, Rothenfluh TE, Musen MA. Mapping
Domains to Methods in Support of Reuse. International
Journal of Human-Computer Studies 41:399-424, 1994.

5. Koedinger KR, Anderson JR, Hadley WH and Mark MA.
Intelligent tutoring goes to school in the big city. International
Journal of Artificial Intelligence in Education 8: 30-43, 1997.

6. Anderson JR, Corbett AT, Koedinger KR, and Pelletier R.
Cognitive Tutors: Lessons learned. Journal of the Learning
Sciences 4(2): 167-207, 1995.

7. Azevedo R, and Lajoie SP. The cognitive basis for the design
of a mammography interpretation tutor. International Journal
of Artificial Intelligence in Education. 9:32-44, 1998.

8. Sharples M, Jeffery NP, du Boulay B, Teather BA, Teather D,
and du Boulay, G.H. Structured computer-based training in
the interpretation of neuroradiological images. International
Journal of Medical Informatics: 60: 263-280, 2000.

9. Eliot CR, Williams KA and Woolf BP. An Intelligent
Learning Environment for Advanced Cardiac Life Support.
Proceedings of the AMIA Annual Fall Symposium,
Washington, DC. 1996; 7-11.

10. Clancey WJ. Guidon. J Computer-based Instruction 10:8-
14,1983.

11. Anderson JR. Rules of the Mind. Hillsdale, NJ: Lawrence
Erlbaum. Associates; 1993.

12. Fensel D, Benjamins VR, Decker S, et al. The Component
Model of UPML in a Nutshell. In proceedings of the First
Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, Texas, 1999.

13. Ackerman AB, Chongchitnant N, Sanchez J, et al.
Histopathologic Diagnosis of Inflammatory Skin Diseases.
An algorithmic method based on pattern analysis. Second
Edition Baltimore, Maryland: Williams and Wilkins; 1997.

14. Motta E and Lu W. A library of components for Classification
Problem solving. IBROW Project Deliverable D1–IST-1999.
(kmi.open.ac.uk/projects/ibrow/Documents/Class_Libr_Dv1.0.pdf).

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 185
	02: AMIA 2003 Symposium Proceedings − Page 186
	03: AMIA 2003 Symposium Proceedings − Page 187
	04: AMIA 2003 Symposium Proceedings − Page 188
	05: AMIA 2003 Symposium Proceedings − Page 189

